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New scaling laws for turbulent boundary layers recently derived (see Oberlack 2000)
using Lie group symmetry methods have been tested against experimental data from
the KTH database for zero-pressure-gradient turbulent boundary layers. The most
significant new law predicts an exponential variation of the mean velocity defect in
the outer (wake) region. It was shown to fit the experimental data very well over
a large part of the boundary layer, from the outer part of the overlap region to
about half the boundary layer thickness (δ99). In the outermost part of the boundary
layer the velocity defect falls more rapidly than predicted by the exponential law.
This can partly be attributed to intermittency in that region but the main cause
stems from non-parallel effects that are not accounted for in the derivation of the
exponential law. The two-point correlation function behaviour in the outer region,
where an exponential velocity defect law is observed, was found to be very different
from that derived under the assumption of parallel flow. It is found to be plausible
that this indeed can be attributed to non-parallel effects. A small modification of
the innermost part of the log-layer in the form of an additive constant within the
log-function is predicted by the Lie group symmetry method. A qualitative agreement
with such a behaviour just below the overlap region was found. The derived scaling
law behaviour in the overlap region for the two-point correlation functions was also
verified by the experimental data.

1. Introduction and theoretical considerations
Scaling issues in turbulent wall-bounded shear flows have been a topic of much

debate since the two-layer hypothesis was introduced by Millikan and von Kármán
(see von Kármán 1930 and Millikan 1938). In this paper the idea of using continuous
transformation group (Lie group) symmetries to identify scaling laws in different
regions of zero-pressure-gradient turbulent boundary layer flow is evaluated using
data from experiments and direct numerical simulations. The use of Lie group
symmetries is a very general tool for identification of possible similarity solutions to
the flow equations. The scaling laws tested here have been obtained by Oberlack (1999,
2000, 2001). The description of the Lie group algebra here follows that of Oberlack
(2002). In the recent book by Cantwell (2002) Lie group symmetry methods for
fluid flows are described in detail, and free turbulent shear flows are given particular
attention.
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The approach of obtaining scaling laws by means of Lie group symmetry methods
offers a high degree of generality and allows study of the influence of, for example,
boundary conditions in a systematic manner. An additional important feature is that
similarity-type solutions found by means of symmetry methods are guaranteed to be
admitted by the underlying equations.

In recent years there has been a large number of papers published on the issue of
the functional form of the mean velocity distribution in the overlap region between the
inner (near-wall) and outer regions. Alternatives to the traditional log-law have been
proposed by for example Barenblatt (1993), George & Castillo (1997) and others.
Österlund, Johansson & Nagib (2000a) and Österlund et al. (2000b) tested these
competing theories using highly accurate measurements in high-Reynolds-number
turbulent boundary layer flow with zero pressure gradient and found that the classical
theory still seemed to give the most accurate representation of the data.

In the two-layer description of wall-bounded shear flows the mean velocity is given
by

u+
1 ≡ u1

uτ

= f (x+
2 ) in the inner region, (1.1)

u∞ − u1

uτ

= F (η) in the outer region, (1.2)

where u1 is the streamwise velocity, uτ is the friction velocity, u+
1 = u1/uτ , u∞ is the

free-stream velocity, x2 is the wall-normal coordinate, x+
2 = x2uτ/ν, and η = x2/∆

where ∆ is a measure of the boundary layer thickness.
The classical description of the overlap region can be given as

u+
1 =

1

�
ln x+

2 + B (1.3)

or equivalently

u∞ − u1

uτ

= −1

�
ln η + C. (1.4)

A short description of the Lie group symmetry method is given in Appendix A.
This description essentially follows that of Oberlack (2002). There we consider flows
(without system rotation) that depend only on one independent coordinate, the wall-
normal distance x2. The inviscid dynamics are studied by considering the equation
for the steady two-point correlation tensor,

Rij (x, r) = u′
i(x, t)u′

j (x + r, t), (1.5)

for positions, x, where the influence from viscous stresses etc. is negligible, and for
separations, r , large enough to be associated with length scales that are negligibly
influenced by viscosity.

The approach of studying the evolution equation for the two-point correlation
function is particularly interesting since it offers the possibility of studying essentially
inviscid dynamics. Under these specified conditions the evolution equation for Rij

can readily be derived from the Euler equations, giving the inviscid equation for the
fluctuating part of the velocity. The resulting evolution equation for Rij inherits the
symmetries from the Euler equations, which yields an interesting possibility for new
insights into turbulence dynamics through the transferred Lie group symmetries.

Under the assumption of parallel flow, where the mean velocity can be written as
ui = u1(x2)δi1, the admitted symmetries can (see Appendix A) be described by an
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equation of characteristics in the following manner:

dx2

ks1
x2 + kx2

=
dr[k]

ks1
r[k]

=
du1

(ks1
− ks2

)u1 + ku1

=
dR[ij ]

2(ks1
− ks2

)R[ij ]

= · · · , (1.6)

where square brackets mean that summation over repeated indices should not be
made. It can also be seen as a four-parameter symmetry group, where the four
parameters are ks1

, kx2
, ks2

, ku1
. We can, for instance, see from equation (1.6) that the

first two are associated with a scaling and translation transformation of the wall
distance. By specification of the values of the two scaling symmetry constants, ks1

and
ks2

, scaling laws for different planar shear flows can be obtained.

1.1. Plane wall-bounded shear flows

Sufficiently close to the solid boundary in wall-bounded flows such as a zero-pressure-
gradient boundary layer or channel flow, we have a region of constant total shear
stress. This can be described by

u2
τ = ν

∂u1

∂x2

− u′
1u

′
2. (1.7)

In the region of strong viscous influence it can be shown that we must have ks2
= 2ks1

(and kx2
= ku1

= 0 near a boundary) and we simply retrieve the linear profile near the
wall. Obviously, the full set of symmetries described by equation (1.6) can only apply
in regions where viscous stresses are negligible.

1.2. The overlap region

We note that in the region where equation (1.7) is valid, the friction velocity, uτ ,
can be seen as an external parameter or boundary condition which inhibits the free
scaling of the streamwise velocity, u1. Let us now consider a region where equation
(1.7) is valid, but restrict our attention to the part sufficiently far from the wall such
that the viscous influence is negligible. Since no scaling of the streamwise velocity is
admitted, we see from equation (1.6) that ks1

− ks2
must be equal to zero, i.e. ks1

= ks2
.

Inserting this into equation (1.6) and integrating we find the following expression for
the streamwise velocity:

u1 =
ku1

ks1

ln

(
x2 +

kx2

ks1

)
+ B ′. (1.8)

In this form, which was derived by Oberlack (see e.g. Oberlack 2001) we recognize
the classical log-law but with an extra constant A = kx2

/ks1
inside the logarithm. We

also recognize the Kármán constant � = ks1
/ku1

. In viscous scaling equation (1.8) can
be written as

u+
1 =

1

�
ln (x+

2 + A+) + B. (1.9)

To understand the influence of the new constant A+ we make a series expansion with
respect to x+

2 ,

u+
1 =

1

�
ln x+

2 + B +
A+

�

1

x+
2

+ h.o.t. (1.10)

Hence, the extra term associated with the new constant A can be regarded as a small,
higher-order, term in the overlap. The fixed location of the wall implies that this
parameter must be of negligible influence in the overlap region. Hence, A+ must be
small in comparison with the x+

2 -values in the region where the symmetry should
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be valid (where the viscous influence is negligible). In the results section we will
investigate whether an influence from such a term can be detected just below the
overlap region.

Afzal & Yajnik (1973) have proposed similar forms of the log-law using a series
expansion. Buschmann & Gad-el-Hak (2002) have also investigated this form, and
Wosnik, Castillo & George (2000) studied it for the pipe flow case.

When free scaling of the mean velocity, u1, is inhibited we readily see from the
characteristic equation (1.6) that (see also Oberlack 2001)

Rij = R̃ij (r/x2). (1.11)

1.3. The outer region

In the outer region of the flow we consider wall distances of the order of the outer
lengthscale, i.e. a scale that is of the order of the boundary layer thickness. In this
region the flow is, hence, influenced by the outer geometrical restriction. This acts as
a boundary condition and is thereby a symmetry-breaking condition that prohibits
a free scaling of the wall-normal coordinate. In the symmetry group described by
equation (1.6) we must, hence, put ks1

= 0, which implies that

du1

dx2

= − ks2

kx2

u1 +
ku1

kx2

. (1.12)

Integration gives

u1 = Cexp exp

(
− ks2

kx2

x2

)
+

ku1

ks2

. (1.13)

This velocity law derived by Oberlack (2001) is the first that has been obtained from
first principles for (parts of) the outer region. This is a remarkable finding and will
be tested against experimental data in § 2.

If ks2
/kx2

is positive we find that u1 approaches a constant value as x2 → ∞. This is
compatible with a boundary-layer situation in a semi-infinite domain. In particular,
we will consider zero-pressure-gradient turbulent boundary layers. The free-stream
boundary condition implies that

ku1

ks2

= u∞. (1.14)

The outer region is sometimes referred to as the wake region (see Coles 1956) or
velocity defect region. There have been some successful efforts to find a universal
expression for the wake region, see e.g. Schultz-Grunow (1940) and Lewkowicz (1982).
They are mostly fits to experimental data without any deeper physical background.

The velocity profile is usually written as a velocity defect law (see equation (1.2))
in this region. To enable a similarity-type description the scaling of the wall-normal
coordinate in the outer region must be done with a length scale that is characteristic
for the boundary layer thickness. Here we will choose to use the Clauser–Rotta length
scale (∆ = δ∗u∞/uτ , where δ∗ is the displacement thickness).

We can now rewrite equation (1.13) (using the boundary condition (1.14)) as

u∞ − u1

uτ

= F (η) = C1 exp (−C2η) (1.15)

where C1 and C2 are constants and η = x2/∆. The validity of the exponential velocity
law in the outer region will be tested here against experimental data, and the constants
C1 and C2 will be determined from the KTH database for zero-pressure-gradient
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turbulent boundary layers (Österlund 1999), which covers a Reynolds number range
of about 2500 < Reθ < 27000 (based on momentum-loss thickness, θ).

1.3.1. Derivation of the Reynolds shear stress in the exponential velocity defect region

The Reynolds shear-stress profile in the region where the velocity defect exhibits an
exponential variation can be derived from the mean streamwise momentum equation
neglecting the influence of viscosity, along with the continuity equation

u1

∂u1

∂x1

+ u2

∂u1

∂x2

= −∂u′
1u

′
2

∂x2

, (1.16)

∂u1

∂x1

+
∂u2

∂x2

= 0. (1.17)

The velocity defect in the outer region is suitably expressed as a function of η

(see equation (1.15)). The wall-normal velocity component is calculated using the
continuity equation (1.17), assuming a logarithmic velocity profile in the boundary
layer below the exponential velocity defect region. This gives an over-estimation of
the wall-normal velocity but it is still accurate to first order in γ = uτ/U∞. Assuming
that the normalized turbulent shear stress is a function of η,

−u′
1u

′
2

u2
τ

= g(η), (1.18)

we obtain the following momentum equation to zeroth order in γ :

g′(η) = H12ηF ′(η), (1.19)

where a prime denotes differentiation with respect to η and H12 = δ∗/θ is the shape
factor. Note that the right-hand side of equation (1.19) originates from the advection
term, i.e. from non-parallel flow effects. Under the parallel flow assumption the
solution for g(η) is simply a constant, i.e. the well-known solution for the overlap
region. The first-order correction to this solution outside the overlap region may be
found by use of the previously derived exponential solution for F (η) in (the inner
part of) the wake region.

We also note from the form of equation (1.19) that the normalization of the velocity
defect with uτ together with the scaling of the wall-normal distance with the Clauser–
Rotta length scale, ∆, gives a consistent similarity form of the momentum equation.
We may expand g(η) in the parameter γ , so that

g(η) = g0(η) + γg1(η) + O(γ 2). (1.20)

The zeroth-order solution is found by inserting g(η) = g0(η) and the exponential
velocity defect law into equation (1.19). The resulting equation has the following
solution:

g0(η) − g0(η0) = H12

C1

C2

[(C2η + 1) exp(−C2η) − (C2η0 + 1) exp(−C2η0)]. (1.21)

The derivation of the equation for g(η), and its solution are described in some detail
in Appendix B.

1.3.2. Two-point correlation functions in the exponential velocity defect region

A further step in the investigation of the new scaling laws derived from Lie group
symmetry methods is to look at the two-point correlation functions in the wake
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region. The equation for the two-point correlation function, neglecting viscosity, in a
zero-pressure-gradient turbulent boundary layer can be expressed as

DRij

Dt
= −Rkj

∂ui

∂xk

− Rik

∂uj

∂xk

∣∣∣∣
x+r

− (uk(x + r) − uk(x))
∂Rij

∂rk

+ (terms containing pressure–velocity correlations and triple correlations). (1.22)

Under the assumption of parallel shear flow, i.e. ui = δi1u1(x2), the above equation
reduces to

0 = −δi1R2j

∂u1

∂x2

− δj1Ri2

∂u1

∂x2

∣∣∣∣
x2+r2

− (u1(x2 + r2) − u1(x2))
∂Rij

∂r1

+ (terms containing pressure–velocity correlations and triple correlations). (1.23)

Note here that if the wall-normal separation, r2, is zero the streamwise–streamwise
correlation component, R11, does not appear in the equation, i.e. this equation then
yields no information regarding the scaling of the R11-component.

Returning to the characteristic equation (1.6) we can see that the two-point
correlation function, assuming inhibited scaling of x2 in the outer region, giving
ks1

= 0, yields the following expressions for ri and Rij :

r̃i = ri, (1.24)

dRij

dx2

= −2
ks2

kx2

Rij . (1.25)

Solving the equation for Rij gives an exponential behaviour of the correlation
functions with twice the exponent compared to that for the velocity defect
(equation (1.15)) i.e.

Rij = R̃ij (r) exp(−2C2η). (1.26)

Modifications of this form due to non-parallel flow and other effects are discussed in
conjunction with the presentation of experimental data in § 2.5.

2. Results
Here we will test the scaling laws derived in the previous section against

experimental data from the KTH database. Also, some DNS data will be analysed
for the same purpose. The focus is on the zero-pressure-gradient turbulent boundary
layer. Scaling laws for other flows and flow quantities can also be derived with the
Lie group symmetry method (see Oberlack 2001 and Cantwell 2002).

2.1. A modified log-law just below the overlap region

The form of the velocity distribution in the region inside the overlap region (sufficiently
far from from the wall for the viscous stress to be negligible) is predicted to take the
form of equation (1.9). With a positive value of A+, such a form should give a small
overshoot (relative to the standard log-law) just below the universal overlap region.
Such a behaviour has been observed in many experimentally obtained mean velocity
profiles for turbulent boundary layers. A sample profile from the KTH database is
shown in figure 1.

A small overshoot around (or just below) x+
2 = 100 is clearly seen. Similar results

can be found in other experiments and simulations. See e.g. figure 1 in Zagarola, Perry
& Smits (1997) and figure 1 in Perry, Hafez & Chong (2001) with data from pipe
flow. See also figure 3.3 in Österlund (1999) and the earlier work by e.g. Smith &
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Figure 1. Streamwise mean velocity profile in inner scaling from Österlund (1999). Note the
‘hump’ in the inner part of the log region. (Dashed line: log-law with � =0.38, B = 4.1.)
Reθ =14300.

Walker (1959). The data here is from boundary layer flow, but it can also be seen
in some direct numerical simulations of turbulent channel flow, e.g. Moser, Kim &
Mansour (1999). There are (at least) three possible explanations for this observation
of overshoot in experimental data.

An inaccuracy in the probe position relative to the wall can give an offset in x2 that
enters the log-law exactly in the same way as the constant A in this case. However,
it seems unlikely that all investigators would over-estimate the distance between the
probe and the wall. Another explanation is that if the mean profile is determined using
a pitot tube, the streamwise velocity is over-predicted in this region. Compensation
for this phenomenon is included in many pitot tube calibration functions. A third
possibility is that it is coupled to the A-constant in the law (1.9). The accuracy of
the hot-wire data of Österlund (1999) has been analysed in detail and the magnitude
of the overshoot is larger than any possible inaccuracy of the measurements. For
instance, the distance to the wall was determined there to within a few ‘plus’ units.

A sensitive measure to test the possibility of a modified log-law is the diagnostic
function Ξ

Ξ =

(
x+

2

du+
1

dx+
2

)−1

. (2.1)

This quantity was evaluated from the ensemble of velocity profiles of the KTH
database, which covers momentum-loss Reynolds numbers from about 2500 to 27000.
The details of the evaluation of this quantity are described in Österlund et al. (2000b).
It is plotted in figure 2. It should be constant and equal to the Kármán constant if the
log-law is valid. As we can see, the classical log-law is valid down to about x+

2 = 200.
With the addition of the constant A+ the modified log-law should give a diagnostic
function that follows the function �(1 + A+/x+

2 ). As is seen in figure 2, this may be
said to be valid down to about x+

2 = 100 if A+ is set to 5. Österlund et al. (2000b)
define the inner limit of the universal overlap region to be about x+

2 = 200. We see
that the influence of the additive constant is essentially below that limit. The choice
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Figure 2. The diagnostic function, Ξ ; data averaged from experiments by Österlund (1999)
(circles), Ξ = � (solid line) and the modified law Ξ = �(1+A+/x+

2 ) (dashed line), with � =0.38
and A+ = 5.

of 5 for the value of A+ can be regarded as somewhat arbitrary since the fit to the
experimentally found ‘hump’ in figure 2 is of a more qualitative character.

We should note that the modified log-law cannot be part of the actual overlap
region since it has a form that cannot be matched with the formulation in outer
scaling. This is consistent with the finding that it only influences the mean profile
below the inside limit of the universal overlap region as defined by Österlund et al.
(2000b).

In direct numerical simulations of channel flow by Moser et al. (1999) the diagnostic
function Ξ has a similar behaviour to the experimental data in figure 2 but without
a proper log region due to the low Reynolds number. This is seen as a dip in the
plot of 1/Ξ in figure 2 of that paper. Similar trends in the behaviour of Ξ are also
found in data from the super-pipe experiment by Zagarola, Perry & Smits (1997) (and
corrected data presented at the IUTAM Symposium, Princeton, USA, Sept. 2002).

2.2. The two-point correlation function, R12, in the overlap region

The streamwise–wall-normal component of the two-point correlation function
normalized with the friction velocity squared, i.e.

R∗
12(x, r) =

u′
1(x, t)u′

2(x + r, t)
u2

τ

, (2.2)

where ∗ denotes normalization with u2
τ , was calculated for a number of separations

in the streamwise direction using Taylor’s hypothesis. Taylor’s hypothesis of frozen
turbulence (
x1 = u1
t) is used throughout this paper whenever correlation functions
are calculated. The use of Taylor’s hypothesis to achieve a chosen separation between
the points in the correlation function will of course be a limiting factor in some parts
of the flow where the fluctuation intensity is large compared to the mean velocity. In
the log-layer u2rms/u1 is fairly small (about 5–8%) and Taylor’s hypothesis should be
expected to work well.

From the characteristic equation (1.6), we saw in the previous section that the
two-point correlation should depend on the variable, rk/x2, alone see equation (1.11).
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Figure 3. The R∗
12 correlation function plotted against wall distance in inner scaling for

varying separation. Non-zero separations (
x1/∆ = 0.032, 0.048, 0.064, 0.080, 0.096, 0.112,
0.128, 0.144, 0.160) are estimated by use of Taylor’s hypothesis. Reθ = 17600.

Here we use a separation vector rk = 
x1δk1. In figure 3, the R∗
12 correlation function

(normalized by uτ ) is plotted against the normalized wall-normal distance. As we can
see, the correlation function for large separations behaves in a functional manner
similar to that for zero separation (u′

1u
′
2/u

2
τ ) although the magnitude in the inner

near-wall region decreases rapidly as the wall is approached for the case of large
separations. This is a natural consequence of the fact that the large-scale structures
are predominantly found away from the wall, in the outer region. Furthermore since
the separations are large and the information associated with R∗

12 therefore is of large
scale the accuracy of the experimentally determined curves should be very good since
the problems with spatial resolution are negligible in this case.

When plotting R∗
12 against 
x1/x2, as suggested by Lie group symmetry scaling

(equation (1.11)), the data collapse for the points from the logarithmic overlap region.
This is shown in figure 4 where the filled circles represent experimental data points
within the overlap region. The good agreement between the theory, developed using
the parallel flow assumption, and the experimental data strongly supports that this
assumption is valid in the logarithmic overlap region.

2.3. An exponential mean velocity defect variation in the wake region

The mean streamwise velocity profiles from the KTH database (Österlund 1999)
used here cover a wide range of Reynolds numbers. In figure 5, 70 of these profiles,
with Reynolds number based on the momentum-loss thickness ranging from 2500 to
27000, are plotted in outer scaling, i.e. as the velocity defect against the wall-distance
normalized by the Clauser–Rotta boundary layer thickness. Despite the large number
of profiles, we can observe a very good collapse of the data. In the log-lin plot there
is a substantial range where the data fall onto a straight line, i.e. where the velocity
defect exhibits an exponential variation with wall distance. The exponential velocity
law (1.15) closely fits the data in the range of about 0.025 � x2/∆ � 0.11 with the
constants determined as

C1 = 10.5, C2 = 9.5. (2.3)
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Figure 4. The R∗
12 correlation plotted against separation scaled with wall distance. Filled

symbols (circles) represent points within the log-layer (x+
2 > 200 and x2/δ95 < 0.15). Separations

(
x1/∆ = 0.032, 0.048, 0.064, 0.080, 0.096, 0.112, 0.128, 0.144, 0.160) are estimated by use of
Taylor’s hypothesis. Reθ = 17600.

Figure 5. 70 mean velocity profiles from Österlund (1999) with 2530 < Reθ < 27300 and the
exponential wake law (dashed line).

One should keep in mind that to translate the wall distances normalized by the
Clauser–Rotta boundary layer thickness to x2/δ99 one should multiply by a factor of
roughly 4.5, which means that the close fit covers a range of about 0.11 � x2/δ99 � 0.50
(0.14 � x2/δ95 � 0.63 and 0.09 � x2/δC � 0.42 where δC is the Coles thickness, see
Coles 1956). Hence, this range corresponds to almost half the boundary layer thick-
ness. It is thereby substantially larger than the region with a logarithmic velocity law.

The innermost part with an exponential velocity-defect variation corresponds
approximately to the end of the overlap region, where the velocity defect has a
logarithmic variation. It may seem surprising that these two rather different types of
velocity law can meet. There is no strict matching between the two, but to illustrate
the situation the logarithmic velocity defect law found by Österlund et al. (2000b) is
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Figure 6. The log-law (solid curve), with � = 0.38 and B = −0.97 and the exponential wake
law (dashed curve), with C1 = 10.9 and C2 = 9.5, versus wall distance in outer scaling.

Figure 7. Direct numerical simulation data (seven profiles) from Skote (2001) for the velocity
defect in boundary layer flow with 380 < Reθ < 710 compared to the exponential wake law
(dashed line).

plotted together with the exponential law (1.15) in figure 6. Note that the exponential
law is not located in an overlap region in the matching between the inner and outer
flow regions. It is completely contained within the outer region. In figure 6 it can be
seen that the solid curve representing the log-law and the dashed curve representing
the wake law meet at an x2/∆ of about 0.035. The derivative of the functions is the
same here as well. The transition between the two forms is, hence, smooth, although
some adjustment region must exist to match higher-order derivatives between the two
forms. The location of the transition is also consistent with the outer limit of the
log-layer as determined by Österlund et al. (2000b).

As seen in figure 5, this set of experimental data with moderate to high Reynolds
numbers closely follows the exponential velocity defect law. In figure 7 data from
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Figure 8. (a) Time-series of the streamwise velocity signal. (b) Short-time variance of the
velocity time series in (a). The vertical dashed lines show the size of the short-time-variance
time window, T . The horizontal dashed line is the short-time-variance threshold, k =0.1u2

1rms.

Skote (2001) from a direct numerical simulation of a zero-pressure-gradient turbulent
boundary layer flow is plotted together with the exponential law. The Reynolds
number based on the momentum-loss thickness varies from 380 to 710. The data
approach the exponential velocity defect law with increasing Reynolds number, but
the curves are not quite straight at these low Reynolds numbers.

In the outermost part of the wake region the velocity defect decreases more rapidly
than predicted by the exponential velocity defect law (see figure 5). A possible reason
for this behaviour is that the relative influence of viscosity may be higher in this
region than otherwise in the outer region. In this paper we will attempt to investigate
this possibility further. Another possible explanation is that undisturbed free-stream
fluid penetrates the boundary layer to give an intermittent behaviour. Since this fluid
has a higher velocity than the local mean of the turbulent flow, the mean velocity
increases and thereby the velocity defect decreases. The region of the boundary layer
affected by the intermittency can be identified by the high flatness factor found there.
The influence of intermittency is checked in this paper using experimental boundary
layer data from the KTH database.

In figure 8 a time trace of a hot-wire signal at x2/∆ =0.272 is shown together with
the short-time variance of the same signal. The free-stream parts of the signal can
clearly be seen here as flat regions where the mean velocity is also higher than in the
turbulent parts. The flatness at this wall-normal position is about ten times higher
than in the log-layer, which indicates a very high degree of intermittency.

The influence of the intermittency on the velocity defect was investigated through
the removal of the free-stream parts of the velocity time signal using a short-time
variance scheme. The idea is to locate the parts of the time signal with free-stream
behaviour, using a running variance window, since the free-stream parts of the time
signal have very low variance compared to the turbulent parts. A threshold, k,
determines whether the given sample is kept or discarded. The short-time variance
(see Blackwelder & Kaplan 1976) is defined as

var =
1

T

∫ t+T/2

t−T/2

u2
1(s) ds −

(
1

T

∫ t+T/2

t−T/2

u1(s) ds

)2

, (2.4)
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Figure 9. A mean velocity defect profile from Österlund (1999) at Reθ = 9600 (solid line),
and compensated for intermittency (dash-dotted line), and the exponential velocity defect law
(dashed line).

where T is the time window over which the variance is calculated. The parts where
the variance is lower than 0.1u2

1rms were removed when the new mean value of the
streamwise velocity was calculated. In figure 8 the threshold level is shown as a
horizontal dash-dotted line. The two vertical dashed lines indicate the size of the time
window, T , used to calculate the short-time variance.

As expected from the short sample in figure 8 the removal of the free-stream parts
from the velocity time series decreases the streamwise velocity and thus increases the
velocity defect at the wall-normal positions with high flatness, see figure 9. Otherwise
the changes are small. The intermittency phenomenon does not, however, seem to be
the major factor in explaining the rapid decrease of the velocity defect.

It has been suggested that the relative influence of viscosity in the outer part of
the boundary layer is high and that this could contribute to the fast approach of the
velocity profile towards the free-stream value. A first check is to evaluate whether the
viscous stresses can be neglected compared to the Reynolds stresses in the outermost
region. If this were not the case the inviscid approximation used to derive the
scaling laws would be inappropriate, and this could be a contributing factor to the
experimental data deviation from the exponential velocity defect law. In figure 10 we
have calculated the ratio of the Reynolds shear stress, −ρu1u2, and the viscous stress,
µdu1/dx2 for a number of different Reynolds numbers (6900 < Reθ < 22600). The
result indicates that the viscous stress is much smaller than the Reynolds shear stress
in the wake outside the region with an exponential velocity defect. The conclusion is
therefore that the reason for the exponential defect law failing outside x2/∆ =0.12 has
to be found elsewhere, and most probably in effects of non-parallel flow. In § 2.5, this
will be discussed further in connection with the evaluation of two-point correlation
data.

2.4. Reynolds shear stress in the exponential velocity defect region

The Reynolds-shear-stress profile corresponding to the exponential form of the
velocity defect law was derived in § 1.3.1 (and Appendix B). The solution to zeroth
order in γ for the normalized shear stress (−u′

1u
′
2/u

2
τ ) is shown for two different
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Figure 10. The ratio between the Reynolds stress and the viscous stress at 6900 < Reθ <
22600. The open and filled symbols are used to facilitate the interpretation of the figure.

Reynolds numbers (Reθ = 6930 and Reθ = 22530) in figure 11. We see that this
solution has the correct functional behaviour in the region with exponential velocity
defect but that the error in magnitude is of order γ .

The solution for g(η) that is accurate to first order in γ (see Appendix B) is of
similar form to g0(η). As seen in figure 11, it represents the Reynolds shear stress
accurately in the region where an exponential behaviour of the velocity defect can be
observed.

2.5. Testing of theoretical predictions for two-point correlation functions in the
exponential velocity defect region

As described in § 1.3.2 the form of the two-point correlation tensor, Rij , that
corresponds to the exponential velocity defect law is given by equation (1.15). The
assumption of parallel shear flow implies that the evolution equation for Rij does not
give any information regarding the scaling of R11. It may still be interesting to study
its behaviour, however. Normalized by u2

τ it is plotted in figure 12 as function of wall
distance, η, for various (large) separations. Here as well as in the following figures
the streamwise separation is calculated by use of Taylor’s hypothesis. The separations
analysed are chosen to be similar in size to typical wall-normal distances in the region
investigated, namely the exponential defect region. Hence, these separations should
be large enough to be associated with inviscid dynamics. We can observe a variation
that is close to an exponential one. A closer look at the slope of the straight lines in
figure 12 shows (see figure 13) that the slope is far from constant and far from the
value 2C2 ≈ 19 in equation (1.15).

For the other two measured components of the two-point correlation function the
exponential behaviour as written in equation (1.26) is expected to describe the spatial
variation of the experimental data. Figures 14 and 15 show that this expectation does
not hold. The predicted behaviour is a rapid exponential decrease (with a −2C2 slope)
with increasing distance from the wall. This is certainly not observed. In fact, neither
of them show any tendency towards an exponential form in the velocity defect region.
The most plausible candidate for the cause of deviation from exponential behaviour
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u'1 u'2
u2

τ

–

Figure 11. (a) Normalized Reynolds shear stress at Reθ = 6930. (b) Normalized Reynolds
shear stress at Reθ = 22530. Solid and dashed curves represent the derived expressions for the
normalized Reynolds shear stress that are accurate to first and zeroth order in γ , respectively.
The integration constants g0(η0) = 0.91 (a) and g0(η0) = 0.99 (b) and g1(η0) = 0 (a, b) have been
chosen to give the best fit to the experimental data. η0 = 0.025.

in the velocity defect and the correlation function is related to effects of non-parallel
flow in the wake region of the boundary layer flow. The effect on the correlation
function is seen to be much stronger than for the velocity defect.

The effect of non-parallel flow in a boundary layer increases with wall distance. In
the overlap region the degree of non-parallel flow is very small, which is supported
by the fact that the theoretically predicted dependence of the R12 correlation was
shown to agree well with experimental data. However, in the outermost part of the
boundary layer the relative importance of non-parallel effects grows. Therefore, the
left-hand side of the equation for the correlations, (1.22), can no longer be neglected
as is the case when the parallel flow assumption is valid.

Now, assume that the correlation function is a function of η and r , i.e.

Rij = Rij (η, r). (2.5)

The validity of the assumption of this form can be debated, and we will return to its
consequences later. We here use this form to simplify the analysis and it is probably
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Figure 12. R∗
11 in the wake region. Solid lines are least-square fits to the data within

the exponential wake region (0.03 <x2/∆< 0.12); ×, zero separation (u1u1/u
2
τ ). Non-zero

separations, (
x1/∆ = 0.032, 0.048, 0.064, 0.080, 0.096, 0.112, 0.128, 0.144, 0.160) are estimated
by use of Taylor’s hypothesis. Reθ = 17300.

Figure 13. The variation of the slope of the least-square-fitted solid lines in figure 12 with
wall distance.

sufficient to yield useful information about the importance of non-parallel effects
in the outer part of the wake region. We can now rewrite equation (1.22) with the
above assumption, also assuming steady state and a velocity defect form of the mean
velocity description. The resulting equation (to zeroth order in γ ) is

η
∂Rij

∂η
= −δi1R2jF

′(η) − δj1Ri2F
′
(

η +
r2

∆

)
−

(
F

(
η +

r2

∆

)
− F (η)

)
1

∆

∂Rij

∂r1

+ (terms containing pressure–velocity correlations and triple correlations). (2.6)
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Figure 14. R∗
12 in the wake region; ×, zero separation (u1u2/u

2
τ ). Non-zero separations,

(
x1/∆ =0.032, 0.048, 0.064, 0.080, 0.096, 0.112, 0.128, 0.144, 0.160) are estimated by use of
Taylor’s hypothesis. Reθ = 17300.

Figure 15. R∗
22 in the wake region; ×, zero separation (u2u2/u

2
τ ). Non-zero separations,

(
x1/∆ =0.032, 0.048, 0.064, 0.080, 0.096, 0.112, 0.128, 0.144, 0.160) are estimated by use of
Taylor’s hypothesis. Reθ = 17300.

Considering the case when the wall-normal separation is zero, i.e. r2 = 0, we obtain
the following equations for the correlation functions:

η
∂R11

∂η
= −2R12F

′(η) + (terms containing pressure–velocity and triple corr.), (2.7)

η
∂R12

∂η
= −R22F

′(η) + (terms containing pressure–velocity and triple corr.), (2.8)

η
∂R22

∂η
= 0 + (terms containing pressure–velocity and triple correlations). (2.9)



144 B. Lindgren, J. M. Österlund and A. V. Johansson

Figure 16. Ratio between production and advection terms in the transport equation for R12.
The velocity defect and the correlation functions have been smoothed and interpolated here
to facilitate differentiation. Reθ = 17300.

Note here that R12 =R21 in equation (2.7) because the separation in the wall-normal
direction is zero.

To test the influence of non-parallel flow the ratio of the production term on
the right-hand side in equation (2.8) and the advection term is calculated from
experimental data for various separations. The result is shown in figure 16. For the
non-parallel effects to be important this ratio should be of order unity (or smaller).
We see in the figure that the advection term rapidly becomes increasingly important
as the boundary layer edge is approached. The influence of the advection term also
increases with increasing separation. Note that the curves in figure 16 are curve fits
to the experimental correlation function data. This was done to obtain a smoother
and clearer picture of the relationship between the terms. It was, however, thoroughly
investigated that the gradients calculated using the curve-fitted data were similar to
gradients calculated from the original data.

Under different assumptions of the form of Rij , e.g. as Rij (η, r/∆), the resulting
equations would be somewhat different from equations (2.7)–(2.9). This may indeed
be a more natural choice. There would then be contributions to equation (2.8) from
other terms related to the new scaling of r that would be more important than the
advection term based entirely on η derivatives. These terms would be large enough to
balance the production term on the right-hand side in at least parts of the exponential
velocity defect region. For both types of Rij forms it seems clear that non-parallel
flow effects give a drastically different behaviour of Rij than predicted under the
parallel flow assumption.

3. Concluding remarks
The new scaling laws for turbulent boundary layers derived by Oberlack (2001)

using Lie group symmetry methods have been tested against the experimental data
of the KTH database for turbulent boundary layers with a wide range of Reynolds
numbers. A modification of the log-law in the innermost part of the overlap region
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could be identified with a constant added to the wall distance in the logarithmic
function. With this constant, A+ ≈ 5, added, the modified log-law described the
experimental data down to x+

2 ≈ 100 instead of x+
2 ≈ 200 with the standard log-law

(where x+
2 ≈ 200 was found by Österlund et al. 2000b as the lower limit of the

universal overlap region). The influence of the new constant decreases rapidly away
from the wall and is negligible in the universal overlap region. This is consistent with
the possibility of matching with the velocity law in outer scaling.

The two-point correlation function in the logarithmic overlap region is predicted
by the Lie group symmetry method to be a function of ∆x1/x2. This scaling of the
wall-normal distance was tested for the R12 component using experimental data and
it was found that the data collapsed well for points in the overlap region. The good
collapse of the data also strongly supports the validity of the assumption of parallel
flow in the overlap region.

The new exponential velocity defect law fits the data remarkably well over a large
part (roughly half) of the boundary layer thickness. This supports the earlier testing
of this law in the work of Oberlack (2001).

An expression for the Reynolds shear stress in the wake region was derived using
the exponential velocity defect law. It was found that in the region where this law
is valid there was good agreement between the experimental data and the theory if
terms of order uτ/u∞ are included.

In the outermost part of the boundary layer the predicted exponential velocity
defect law deviates substantially from the experimental data. The non-parallel flow
effects are the most probable cause of this deviation. These effects were also found
to have a major influence on the two-point correlation functions, and their form was
found to be quite different from that predicted under the assumption of parallel mean
flow.

The authors would like to thank Professor Martin Oberlack for sharing his
knowledge on Lie group symmetry methods and discussing the various results in
this investigation. Financial support from the Swedish Research Council for the first
author is greatfully acknowledged.

Appendix A. Lie group symmetry methods for differential equations
Basic descriptions of symmetry methods for differential equations are given by

e.g. Hydon (2000), Oberlack (2001, 2002) and Cantwell (2002). These methods can
be viewed as a very general tool for obtaining similarity solutions, or invariants,
of differential equations. We will give a brief description below of some of the key
elements of such symmetry methods based on continuous Lie groups. An example is
similarity-type solutions to partial differential equations, that effectively reduce the
number of independent variables. The description below follows that of Oberlack
(2002). It is given here to illustrate the foundation of the ideas, in the form of scaling
laws, explored in the present paper.

The basic idea of symmetry methods for differential equations is to construct
methods of finding transformations of the (ordinary or partial) differential equation
that do not change its functional form with the change of variables

F (x, y, yi) = 0 ⇔ F
(
x∗, y∗, y∗

i

)
= 0 (A 1)

where x is the vector of independent variables, y is the vector of dependent variables,
index i denotes all derivatives of order i on y and ∗ denotes the transformed variables.
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Concentrating our efforts on Lie group symmetries we have analytic transformations
that depend on a continuous parameter, ε. We write

Sε : x∗ = φ(x, y; ε) and y∗ = ψ(x, y; ε). (A 2)

From a Taylor expansion with respect to ε we can derive the transformation groups
in infinitesimal form,

Sε : x∗ = x + εξ (x, y) + O(ε2) and y∗ = y + εη(x, y) + O(ε2) (A 3)

where ξ = ∂φ/∂ε
∣∣
ε=0

and η = ∂ψ/∂ε
∣∣
ε=0

are the so-called infinitesimals.
The striking feature about the Lie group method is that the transformation

in infinitesimal form (only terms of order ε are kept) is fully equivalent to the
transformation in global form (as given by (A 2)). The continuous form can hence be
determined from the infinitesimals by integrating the first-order system

dx∗

dε
= ξ (x∗, y∗),

d y∗

dε
= η(x∗, y∗) (A 4)

with initial conditions x∗ = x, y∗ = y at ε = 0.
Furthermore, an important property of Lie groups is that all linear combinations

of distinct symmetry groups S(i)
ε also are symmetry groups. This property is also

inherited by the infinitesimal form. The superposition property plays a central role in
the determination of the scaling laws given in the results section.

To find all symmetries of a differential equation in a rigorous manner, the symmetry
condition in equation (A 1) should be written in infinitesimal form (through Taylor
expansion). If we restrict ourselves (for algebraic simplicity) to a system of first-order
differential equations we may write this as

F (x, y, y1) + εXF (x, y, y1) + O(ε2) = 0. (A 5)

We may note that the first term in equation (A 5) is equal to zero, according to
equation (A 1), and we can write the symmetry condition in infinitesimal form as
follows:

XF|F=0 = 0. (A 6)

X in equations (A 5) and (A 6) is (for a system of first-order differential equations)
defined as

X = ξi

∂

∂xi

+ ηj

∂

∂yi

+ · · · . (A 7)

The first terms in equation (A 7) are together called the generator. In a somewhat
simplified way we might say that to find the symmetry groups for a particular dif-
ferential equation one introduces unknown infinitesimals ξ and η into equation (A 6).
The result is an over-determined set of linear homogeneous differential equations that
is solved for ξ and η. The infinitesimals are then transformed to global form through
the Lie differential equation (A 4) with the initial condition given in connection with
that equation.

We can define an invariant solution for a partial differential equation like the second
equation in (A 1). If this equation admits a symmetry in the form of a generator,
X, y = Θ(x) is an invariant solution to the partial differential equation if y − Θ(x)
is invariant under X, and y = Θ(x) is a solution to the partial differential equation.
Using the definition of a generator X from equation (A 7) a hyperbolic system is
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obtained,

ξk(x, Θ)
∂Θl

∂xk

= ηl(x, Θ), (A 8)

and the corresponding characteristic equation is

dx1

ξ1(x, y)
= . . . =

dxm

ξm(x, y)
=

dy1

η1(x, y)
= . . . =

dym

ηm(x, y)
. (A 9)

Note that here Θ is replaced by y.
Oberlack (2002) identifies the symmetries of the Navier–Stokes and Euler equations,

and analyses further the symmetries of the differential equation (derived e.g. by
Oberlack & Peters 1993) for the two-point correlation tensor, which is defined as

Rij (x, r; t) = u′
i (x; t) u′

j (x + r; t) (A 10)

where r is the separation vector.
The Euler equations admit a ten-parameter symmetry group, whereas the viscosity

in the Navier–Stokes equations implies a symmetry breaking that reduces this to a
nine-parameter group. The elements can be qualitatively described as:

(i) one group that describes translation in time (for which the Euler and Navier–
Stokes equations obviously are invariant);

(ii) three rotation groups that simply signify rotation of the coordinate system
around each of the three axes (along with corresponding redefinition of the velocity
components);

(iii) three groups signifying extended Galilean invariance (in each of the three
coordinate directions);

(iv) pressure invariance (under the addition of an arbitrary pressure term that is
solely a function of time, or constant);

(v) two groups for the Euler equations and one for the Navier–Stokes equations,
describing scaling invariance.

An important feature of analysing the equation for the two-point correlation tensor
is that we can study essentially inviscid dynamics by restricting attention to separations
that give length scales that are negligibly influenced by viscosity, and at the same
time, restricting attention to positions in space where the influence of viscosity (e.g.
through viscous stresses) is negligible. This means that all symmetries from the Euler
equations carry over to this equation.

Note that this is not the case for the Reynolds stress transport equation, i.e. the
single-point limit of the Rij -equation, even if we restrict attention to positions where
viscous stresses are negligible.

Hence, the equation for the two-point correlation tensor, admits a ten-parameter
symmetry group for length scales (and positions) where the viscous influence is
negligible. (The possibility for further symmetry groups of this equation has been
investigated by Oberlack and co-workers.) However, restricting ourselves to plane
turbulent shear flow with all mean quantities dependent only on the wall-normal
coordinate, x2, leaves us with only four of the original ten symmetries. These
symmetries are: the two scaling symmetries, Xs1

and Xs2
, reduced here due to the

one-dimensional mean flow, u1 = u1(x2); the traditional Galilean invariance in the
streamwise direction, Xu1

; and the spatial translation symmetry Xu2
(which is the only

part left of the extended Galilean invariance in the wall-normal direction).
The symmetry group for the Rij -equation, with the above described restrictions, can

then be written as (where terms related to pressure–velocity and triple correlations
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have been left out)

Xs1
= x2

∂

∂x2

+ u1

∂

∂u1

+ 2p
∂

∂p
+ ri

∂

∂ri

+ 2Rij

∂

∂Rij

+ · · · , (A 11)

Xs2
= −u1

∂

∂u1

− 2p
∂

∂p
− 2Rij

∂

∂Rij

+ · · · , (A 12)

Xu1
=

∂

∂u1

, (A 13)

Xu2
=

∂

∂x2

. (A 14)

Recalling the superposition property of Lie group algebra, we can combine the four
symmetries into

X = ks1
Xs1

+ ks2
Xs2

+ ku1
Xu1

+ kx2
Xu2

, (A 15)

where ks1
, ks2

, ku1
and kx2

are constants (parameters).
We should keep in mind that the above with ks1

, ks2
being independent is only

valid in situations where viscous influence is negligible. For cases with significant
influence of viscosity it is straightforward to derive the symmetry-breaking relation
that requires that ks2

= 2ks1
.

The characteristic form of the hyperbolic equation (A 8) for the inviscid case is

dx2

ks1
x2 + kx2

=
dr[k]

ks1
r[k]

=
du1

(ks1
− ks2

)u1 + ku1

=
dR[ij ]

2(ks1
− ks2

)R[ij ]

+ · · · , (A 16)

where [ ] means that there is no summation over the indices. By changing the values
of the two scaling symmetry constants, ks1

and ks2
, scaling laws for different shear-flow

situations can be derived.

Appendix B. Derivation of an expression for the Reynolds shear stress in the
wake region

Using the exponential velocity defect law, derived by use of Lie group symmetry
methods, an expression for the corresponding Reynolds-shear-stress profile is derived
here, which is accurate to first order in γ = uτ/u∞. Perry, Marušić & Li (1994) also
treats the case with non-zero pressure gradient with the aim of analysing the attached-
eddy hypothesis. The streamwise momentum equation for a zero-pressure-gradient
boundary layer, neglecting the viscous stress, and the continuity equation are

u1

∂u1

∂x1

+ u2

∂u1

∂x2

= −∂u′
1u

′
2

∂x2

, (B 1)

∂u1

∂x1

+
∂u2

∂x2

= 0. (B 2)

The velocity defect is defined as

u∞ − u1

uτ

= F (η) (B 3)

where η = y/∆ and ∆ = δ∗/γ is the Clauser–Rotta boundary layer thickness.
Differentiating u1 with respect to x1 and x2, making use of equation (B 3), yields

∂u1

∂x1

= −uτ

∂η

∂x1

F ′(η) − duτ

dx1

F (η) (B 4)
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for the x1-derivative and

∂u1

∂x2

= −uτ

∆
F ′(η) (B 5)

for the x2-derivative. A prime here denotes differentiation with respect to η. The
expression for the x1-derivative of uτ can be found from the logarithmic friction law,
which was found by Österlund et al. (2000b), to agree very well with experimental
data. It is

uτ

u∞
=

(
1

�
lnReθ + C

)−1

. (B 6)

Differentiating equation (B 6) with respect to x1 and multiplying with θ gives

θ

u∞

duτ

dx1

= −θ

(
1

�
lnReθ + C

)−2
1

�θ

dθ

dx1

= −γ 4

�
(B 7)

since
dθ

dx1

= γ 2 (B 8)

for a zero-pressure-gradient boundary layer.
We will also need dδ∗/dx1 below, which we can write as

dδ∗

dx1

=
d(H12θ)

dx1

= H12γ
2 + θ

dH12

dx1

. (B 9)

By inserting the definition (B 3) into the expressions for δ∗ and θ we readily obtain

H12 =

∫ ∞

0

F (η)dη

/(∫ ∞

0

F (η)dη − γ

∫ ∞

0

F 2(η)dη

)
= 1

/(
1 − γ

∫ ∞

0

F 2(η)dη

)

(B 10)

where the second identity follows from the definition of ∆. Hence we obtain (by use
of equation (B 7)),

dH12

dx1

= −H 2
12

�θ
γ 4

∫ ∞

0

F 2(η)dη (B 11)

and thereby

dδ∗

dx1

= H12γ
2 + O(γ 4). (B 12)

We can now compute the derivatives of η as

∂η

∂x1

= − η

∆

d∆

dx1

= − η

∆

(
1

γ

dδ∗

dx1

− δ∗u∞

u2
τ

duτ

dx1

)
= − η

∆
H12γ

(
1 +

1

�
γ + O(γ 2)

)
(B 13)

and
∂η

∂x2

=
1

∆
. (B 14)

Multiplying with ∆/uτ and making use of equations (B 13) and (B 7) we can rewrite
expression (B 4) as

∆

uτ

∂u1

∂x1

= H12γ

(
ηF ′(η) +

1

�
γ (ηF (η))′ + O(γ 2)

)
(B 15)



150 B. Lindgren, J. M. Österlund and A. V. Johansson

and (B 5) as

∆

uτ

∂u1

∂x2

= −F ′(η). (B 16)

Finally, to complete the left-hand side of equation (B 1) it also necessary to calculate
u2. Using the continuity equation (B 2) and equation (B 15) we can express u2 as

u2 − u20
= −uτH12γ

{∫ η

η0

ξF ′(ξ )dξ + O(γ )

}
, (B 17)

where η0 is chosen here as the outer limit of the log-layer. To estimate u20
we assume

a logarithmic velocity defect law, Flog(η), in the region 0 < η < η0,

Flog(η) = −1

�
ln η + C, η � η0. (B 18)

This assumption will overestimate u20
with an error in u20

of order γ 2. Introducing
equation (B 18) into the continuity equation, (B 2), and integrating gives the following
expression for u20

:

u20
= H12

uτγ

�
η0 + O(γ 2). (B 19)

Furthermore, it is assumed that the Reynolds shear stress normalized with u2
τ is a

function of η, i.e.

g(η) = −u′
1u

′
2

u2
τ

. (B 20)

Using equation (B 14) to rewrite the right-hand side of equation (B 1) gives, together
with equations (B 3), (B 15), (B 16) and (B 20) a momentum equation of the following
form:

1

H12

g′(η) = ηF ′(η) + γ

{
1

�
(ηF (η))′ − F ′(η)

(∫ η

η0

F (ξ )dξ + η0F (η0) +
η0

�

)}
+ O(γ 2).

(B 21)

This equation can be solved in the region where the exponential velocity defect law,
(1.15), was found to agree well with experimental data.

We may express the Reynolds shear stress as a series expansion in γ ,

g(η) = g0(η) + γg1(η) + O(γ 2). (B 22)

To zeroth-order accuracy in γ we obtain

g′
0(η) = H12ηF ′(η). (B 23)

If F (η) is taken here as the exponential velocity defect law, integration yields

g0(η) − g0(η0) = H12

C1

C2

{(C2η + 1) exp(−C2η) − (C2η0 + 1) exp(−C2η0)}. (B 24)

For first order accuracy in γ we obtain, by combining equations (B 21) and (B 22),
the following correction term to the Reynolds shear stress:

g1(η) − g1(η0) = H12

C1

2C2�
{2C2(η − η0) exp(−C2η) + C1� exp(−2C2η)

− 2C1�(C2η0 + 1) exp(−C2(η + η0)) + C1�(2C2η0 + 1) exp(−2C2η0)}. (B 25)
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The complete expression for the normalized shear stress, to first-order accuracy in
γ , is found by introducing (B 24) and (B 25) into equation (B 22). One could also
consider an order-γ correction to the exponential velocity defect law. By studying
the magnitude of the terms of order γ included in the approximation (B 21) one
can conclude, however, that the O(γ )-correction to F (η) must give a negligible
contribution for the Reynolds number variation observed in figure 5. This is also
evidenced by the fact that the solution g0(η) + γg1(η) accurately approximates the
measured Reynolds shear stress (see figure 11).
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Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000b A note on the overlap
region in turbulent boundary layers. Phys. Fluids 12, 1–4.

Perry, A. E., Hafez, S. & Chong, M. S. 2001 A possible reinterpretation of the Princeton superpipe
data. J. Fluid Mech. 439, 395–401.
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